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: Abstract

A method is presented for obtaining minimum discrimination
information (M.D.I.) estimates of probability distributions. This
involves using an extremal principle of Charnes and Cooper (4] and,
viewing M. D.I. estimation in a dual convex programming framework.

The resulting dual convex program is unconstrained and involves only

exponential and linear terms, and hence is easily solved. This approach

makes M.D.I. estimation computationally efficient and reduces the

time and cost of obtaining such estimates.

b | Key words and phrases: minimum discrimination information estimation,

j information theory, convex programming, unconstrained dual
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§1 Introduction and Summary

Wiener (1948 p. 76) remarked quite early that entropy (or
Shannon-Wiener type measures of the amount of information) could
eventually replace Fisher's definition [9] of information (see Kullback
{11]). Still, information theory is often mistakenly considered pri-
marily as a subfield of communication theory, where indeed Shannon's
entropy has proved essential [14]. The statistical community has only
fairly recently (after the 1967 translation of Kullback's 1959 monograph
into Russian) been assessing the use of information theoretic concepts
in inference, although there were notable early recognitions of the statis-
tical power of the theory (e.g. [12], [13], [16], see also the references
in [11]). The information functional we consider will be called the
Khinchin-Kullback-Leibler functional in honor of their early contribu-
tion to this theory. Modern contributions of Akaike elucidate some of
this power, and show that the information theoretic framework is per-
haps the proper approach to many diverse problems of statistics. In
[1] he gives an information theoretic extension of the maximum like-
lihood principle and shows that the Khinchin-Kullback-Leibler type
information functional naturally arises in statistical problems. By
utilizing the maximum relative entropy (or equivalently the minimum
expected log likelihood ratio) quantity he is able to encompass both

statistical estimation and hypothesis testing into a decision theoretic
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framework using a Khinchin-Kullback-Leibler type loss function. His
techniques are applied to such important considerations as the decisio‘n
of the number of factors to include in factor analysis, the number of
independent variates to choose in multiple regression, and the order

of the model when fitting an autoregressive time series. In [2] Akaike
shows that using his extension of the maximum likelihood method
enables one to obtain a solution to the problem of James-Stein estima-
tors. In [3] he looks at Bayes procedures from an information theoretic
point of view.

The information theoretic approach is based upon the mean
information for discriminating between two densities f; and f2 (relative
to some fixed dominating measure A). The mean information for dis-
criminating in favor of f; against f2 is defined by Kullback [11] as

f 4(x)
I(f: f2) = ffl(x) on [T—IT)_—J a(dx). He also calls this the directed
X
2
divergence between the two probability measures and shows I(flzfz) 20

with equality if and only if f; =f, a.e. [A]. Thus one may estimate

fo by that density f which is closest in the sense of information distance
to f2’
This method of estimation is called minimum discrimination information

(M.D.1.) and is based upon the following inequality:

M. D.I. inequality: Suppose T (x) is a statistic for which

M2('r) = Se TT(x) f2 (x) A (dx) exists in an interval, and consider those

and one may impose additional constraints upon f; when necessary.




=

o A kS b I S AN NS S 50 A A B et NN A TN s 1L B 5D o A 2 bt S N S LSS it s s

B

densities f, satisfying © = ST(x) f; (x) A (dx) for a known parameter 6 .

Then T(f;ify) * 87 - ¢ My(1) where © =—S- 0nM,(7) with equality iff

f1(x) = f’; (x) = e’ T(x) f2 (x) / M2(T) a.e. [A].

The density f? (x) is called the M.D.I. estimate of f, subject to
o = f’l‘(x) f,(x) d AMx) (or the "conjugate' distribution in Khinchin's
terminology).

Since solving for the M.D.I. estimate f’; entails solving the equa-

tion

e %Mz(‘f) = @ for T (a highly non linear problem) it has been
quite difficult computationally to obtain M. D.I. estimates. This implicit
differential equation relation is also difficult to work with analytically.
The purpose of this paper is to show how to view M,.D.I. estimation
from a dual convex programming point of view and to point out analytical

properties of the estimates which follow directly from the form of this

duality. In particular, the dual problem is unconstrained and involves

only exponential and linear terms. This pair of dual problems is easily
solved by any of a number of existing algorithms. The T variables
needed for f; and called ""dual parameters' i, Gokhale and Kullback
(1978) are here shown to be actual variables in the dual convex pro-
gramming problem.

This dual formulation was first developed by Charnes and Cooper
(4], 5] (see also [7]) who applied the technique to show that the account-

ing balance equations for a cartel or ''resource-value transfer' economy
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could be derived from Khinchin-Kullback-Leibler statistical estimates

e

constrained by a linear inequality system. Other new developments show- 3
ing that old heuristic estimating procedures are actually constrained

Khinchin-Kullback-Leibler estimations, such as (Charnes, Raike, Bett-

SR

inger [8]) "gravity potential" estimates, SANDDABS estimates in market-
3 ng analysis (Charnes, Cooper, Learner [6]), and various depreciation
E methods in accounting (Theil and Lev [15]) lend great weight to the idea
that efficient analytical and computational techniques for M.D. 1. estima-

tion can be valuable in applied research.
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€2 Unconstrained Dual Prgrammigjg__Approach to Estimation

An important application of M.D. 1. estimation is to the analysis of
contingency tables, and we shall utilize this example to elucidate the

techniques of this section. Denote a contingency table cell by the generic

lable w and the collection of all cells by Q2. For a suitable choice of

probability measure m(w) over the contingency table we Q (in general

m(w) is determined by the specific problem of interest), Gokhale and

Kullback [10] pose the problem of finding that probability measure p’°<
(the M.D.1. estimate) which minimizes I (p: m) subject to the equality
constraints C p = £ and the non-negativity constraintsp20. Here C
(called the design matrix) is an (r + 1) x |Q| matrix, p is the 1 x |Q]

vector of probabilities and 8 isa 1 x (r + 1) vector. If we denote the

rows of C by Ci(w), i=0,. .., r, the constraints are of the form

g C,wp@=8,i=0,. .., r. Usuallywe take 6, =1and C(w)>=1
for all w € Q so that the first constraint insures that p is a probability
measure. The remaining r equations are (usually) moment constraints. Gok-

hale and Kullback additionally require that the vectors Ci(') are linearly

independent in order to obtain their estimates. As we shall see, the pro-

gramming formulation does not require this assumption. This is
important since, even aside from having to recognize linearly indepen-

dent constraints, the transformation to obtain such linearly independent

constraints can be difficult and onerous.
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By using Lagrange multipliers Gokhale and Kullback show that the
minimizing probability distribution is
- R
2.1) P =exp {7y + T,Ciw+. . .+ 'rrCr(w)} mw)
where, they say, the T's are to be determined in such a way that QE* = 8 holds.

The problem of determining (Ty, . . ., T ) so as to satisfy SE* = 8 is in general,
quite difficult. The following Charnes-Cooper extremal principle, however,

makes this very easy computationally.

Let K (8, x) de* -6 x for 62 0, d>0, x ¢ /R, and define

n

) ; 6
g (8) = inf K (8, x) G -8 W/—a-, = =0 (—-—) . Then it follows that
x d ed

¢

’
for §=1(5, ..., $), and =0, 000, %)

= 2 = ..T —1- Xj -
(2.2) v(%) 2 g(s.) 2 §;n —3- = 12 [die™ - 8, x.].

1

Suppose that x = A z for some matrix A. And let iA denote the ith row of

A, and set é' 8 =b. Then (2.2) becomes

5.
5 i id 2
?6i%<edi)s?[diel -8 Azl

(2.3)  v(8)

IN

?%eﬁé'ﬁ = &(z)

which holds for allz and 6 ¢ {8:A6 = b, 620} .

~

We then have:

Theorem 2.1 (Charnes - Cooper [4], [5]) For the following dual convex

programs

8
() sup w(8) = -2 6.%(-—-1—-) subject to
;R edi

.

A
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(I)  inf §(z) = Td,e!
A 1

~

there are exactly three mutually exclusive and collectively exhaustive duality
states:

(1) & = {2:é’£=g, 6§20} = ¢ and E(z) is unbounded below.

(2) N8 =0foralldcAr? ¢ and € (z) has only an infimum.

Further inf §(z) = min §D (z) where §D(£) contains only those

terms of §(z) for which éi> 0 in some 6 ¢ A.

(3) There exists § ¢ A with § >0 and §(z) has a minimum at z".

Further: (a) v(8) has a unique maximum at Q* >0

E(z™)
Az,*

(b) v(8)

(c) 63’.(
i

d.el
i

Note that there is no requirement of linear independence made, and
all possible behaviors of the system A are comprehended. Cf course, the
usual state in applications will be (3). If the requisites for state determina-
tion are not obvious, the state may be determined by solution of the linear

programming problem: max u

subject to E’.E" g' <0
A% = b
8 20

State (1) corresponds to infeasibility, state (2) corresponds to w¥=0 and

state (3) corresponds to W >0, (c.f. [T)
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This result is very attractive since the dual problem (II) is an

unconstrained convex programming problem involving only exponential

and linear terms and hence is easily solved numerically. The original
constrained Khinchin-Kullback-Leibler estimation problem (I) was very
difficult to solve. It should also be noted that case 3 of Theorem 2.1 could equally
well have been proven in the general measure-theoretic case in almost
the same manner as the finite discrete case [7], [17].
Referring back to (2. 1) and the determination of (Tg, . . ., T.),
we note that taking 8, = p(w), w eQ, dw = e-lﬂ(w). é =C and b = @
in Theorem 2.1 yields the Gokhale-Kullback M,D.I. problem mentioned

at the beginning of this section. The dual problem is the unconstrained

- '
(2.4) min Z e Lnw 4% - ¢,
Zz o 4

~

where C, is the w th column of the (r + 1) x Q matrix C. If
this minimum occurs at z say, then theorem 2.1 implies that
z" is to be identified as T in p(w) = e-1 m(w) eQ wd -

%k

*
L
exp { T + Ty

Ci@+. .. +7°C ] mw.
Thus the T's arise in (2. 1) and are easily computed from the unconstrained
convex programming problem (2.4). Thus the computation of constrained
M. D.I. estimates becomes a rather straightforward problem.

Further, item (c) in state 3 shows immediately that whatever the

form of the di - distribution, the M. D.I. estimated distribution is of the

exponential family. As may be noted from the results for general




distributions in [7], a similar property persists there as well. Thus the
M. D. 1. estimated distributio '3 have the attractive property of preserving
sufficient statistics associated with the target distribution since its density
is multiplied by an exponentiallinear in ’zv* to get the M. D.I. estimate.

Also, Gokhale and Kullback [10] noted, when fitting marginals for
contingency tables by M.D.I. estimation one obtains the log-linear model
for contingency table entries as a by-product. Here this is immediaiely
evident (without further qualifications or Gokhale and Kullback's additional
requirements) by taking logs in item (c) of state 3.

As alluded to in section one, this dual approach to constrained
Khinchin-Kullback-Leibler estimation has already proven valuable in
practice. In marketing research, Charnes, Cooper and Learner [6] substan-
tially extended the SANDDABS analysis used to evaluate consumer purchase
behavior and brand shifting. They showed that the calculations involved
in the analysis could be viewed as constrained Khinchin-Kullback-Leibler
estimation, and thereby brought the procedure under the ambit of sta-
tistical theory rather than leaving it as merely a heuristic estimation
method. By utilizing the dual approach outlined in Theorem 2.1 they

were able to improve the computational efficiency of the analysis as well.
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